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Abstract

We present BSGP, a new programming language for general pur-
pose computation on the GPU. A BSGP program looks much the
same as a sequential C program. Programmers only need to sup-
ply a bare minimum of extra information to describe parallel pro-
cessing on GPUs. As a result, BSGP programs are easy to read,
write, and maintain. Moreover, the ease of programming does not
come at the cost of performance. A well-designed BSGP compiler
converts BSGP programs to kernels and combines them using opti-
mally allocated temporary streams. In our benchmark, BSGP pro-
grams achieve similar or better performance than well-optimized
CUDA programs, while the source code complexity and program-
ming time are significantly reduced. To test BSGP’s code efficiency
and ease of programming, we implemented a variety of GPU appli-
cations, including a highly sophisticated X3D parser that would be
extremely difficult to develop with existing GPU programming lan-
guages.

Keywords: programable graphics hardware, stream processing,
bulk synchronous parallel programming, thread manipulation

1 Introduction

The recent advent of commodity graphics hardware offers
formidable raw processing power at a moderate cost. However, pro-
gramming the GPU for general purpose computation is by no means
easy. Existing general purpose programming languages for the
GPU are based on the stream processing model as GPUs are stream
processors. These languages include Brook [Buck et al. 2004],
Sh [McCool et al. 2002], and CUDA [NVIDIA 2007]. Stream pro-
cessing is a data centric model, in which data is organized into ho-
mogeneous streams of elements. Individual functions called kernels
are applied to all elements of input streams in parallel to yield out-
put streams. Complex computation is achieved by launching mul-
tiple kernels on multiple streams. This stream/kernel abstraction
explicitly exposes the underlying data dependencies.

The stream processing model, while supplying high performance,
makes general purpose GPU programming hard for several reasons.
First, program readability and maintenance is a big issue. In or-
der to reduce the costs of kernel launches and stream management,
multiple processes have to be bundled into a single kernel so that
the numbers of intermediate streams and kernel launches are mini-
mized. This bundling is done solely based on dataflow; the bundled
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Figure 1: BSGP system architecture. The programmer writes a
single compact BSGP program which looks much the same as a se-
quential C program. The BSGP compiler automatically translates
the BSGP program into stream kernels and generates management
code for GPU execution.

processes usually do not relate to each other in their high level func-
tionalities. As a result, an optimized stream program is very diffi-
cult to read. Also, when new functionalities are added, the dataflow
changes accordingly. To avoid performance penalties, all affected
kernels must be refactorized to optimize for the new dataflow, and
this incurs a considerable source code maintenance cost. Second,
management of temporary streams is a serious headache for pro-
grammers. For programs with multiple kernels, intermediate values
are passed through kernels by using temporary streams. For opti-
mal memory usage, each stream usually has to be recycled multi-
ple times to hold many independent values. This recycling is done
manually by the programmer, and for sophisticated programs with
many intermediate values, this is a tedious and error prone process.
Finally, the abstraction of parallel primitives is difficult, which hin-
ders code reuse. Specifically, many parallel primitives (e.g., scan
[Sengupta et al. 2007]) require multiple kernel launches. When
such a primitive is called by a kernel, part of the primitive needs to
be bundled with the caller to reduce intermediate stream sizes and
kernel launch costs. The result is a primitive with broken integrity,
which makes abstraction of the primitive difficult. Because of the
above problems, it is extremely difficult to write even moderately
complex general purpose programs, such as the X3D parser shown
later in this paper, using today’s GPU programming languages.

In this paper we introduce BSGP (bulk synchronous GPU program-
ming), a new programming language for general purpose computa-
tion on the GPU. The most important advantage of BSGP is that
it is easy to read, write, and maintain. BSGP is based on the BSP
(bulk synchronous parallel) model [Valiant 1990]. Like any BSP
program, a BSGP program looks much the same as a sequential
C program. Programmers only need to supply a bare minimum of
extra information, the barriers, to describe parallel processing on
GPUs. The statements between two barriers are automatically de-
duced as a superstep and translated into a GPU kernel by the BSGP
compiler, as shown in Fig. 1. Each superstep is thus executed in
parallel by a number of threads, and all supersteps are delimited by
barrier synchronizations to ensure steps are executed in sequential
order with respect to each other. Another advantage of BSGP is that
programmers are freed from the tedious chore of temporary stream
management. In a BSGP program, data dependencies are defined
implicitly because local variables are visible and shared across su-
persteps. Finally, BSGP makes the abstraction of parallel primitives
simple and thus facilitates source code reuse. With BSGP, a paral-
lel primitive such as reduce, scan and sort can be called as a whole



in a single statement. Listing 1 and Listing 2 compare BSGP and
CUDA programs implementing the same algorithm.

The BSGP programming model does not directly match the GPU’s
stream processing architecture, and we need a compiler to convert
BSGP programs to efficient stream programs. To build such a com-
piler we need to address two challenging issues. The first is the
implementation of barrier synchronization. While barriers can be
directly implemented using hardware synchronization for coarse-
grained parallel architectures [Hill et al. 1998], this is not possi-
ble in a stream environment. In the GPU’s stream environment,
it is common to create orders of magnitude more threads than can
be executed simultaneously on physical processing units. Threads
are dynamically distributed to available processing units for exe-
cution. Resources like registers for holding thread contexts are re-
cycled upon completion. Synchronization of physical processing
units does not affect non-executing threads, and is thus not equiva-
lent to a (logic) barrier of threads. Waiting for all threads to finish
could serve as a valid barrier, but it would also cause thread contexts
to be destructed. To address this issue, we designed the compiler
such that it automatically adds context saving code to make the bar-
rier conform to BSGP semantics, as discussed in Section 4.2.

The second issue is how to generate efficient stream code. Since lo-
cal variables are visible and shared across the supersteps in a BSGP
program, the compiler needs to analyze the data dependencies be-
tween supersteps and automatically allocate temporary streams to
save local variable values at the end of a superstep and pass these
temporary streams to the subsequent supersteps. How to minimize
the total number of temporary streams is critical for the efficient
use of the limited video memory available on the GPU. Our so-
lution is based on a graph optimization scheme described in Sec-
tion 4.3. Thanks to the sequential organization of supersteps, we
can obtain the optimal solution in polynomial time. Compared to
the manual management of temporary streams in existing GPU pro-
gramming languages such as CUDA, our optimization scheme can
achieve similarly efficient usage of the video memory.

Additional features of BSGP include:

• Thread manipulation emulation. We transparently emulate two
thread manipulation features, thread creation and destruction,
with operations fork and kill, which are extremely useful in par-
allel programming but are missing in existing GPU programming
languages.

• Thread communication intrinsics. BSGP allows remote variable
access intrinsics for efficient communications between threads.

• Collective primitive operations. BSGP features a library of easy-
to-use collective primitive operations including reduce, scan and
sort (see Appendix A).

To test BSGP’s code efficiency and ease of programming, we im-
plemented a variety of GPU applications. Our experience indicates
that BSGP programming is much easier and more effective than
CUDA programming. To demonstrate the potential of BSGP, we
present several BSGP source code examples, including a ray tracer,
a particle-based fluid simulator, an X3D parser and an adaptive
mesh tessellator. In the ray tracer example, BSGP and CUDA im-
plementations achieve similar performance and memory consump-
tion. However, BSGP enjoys much lower source code complexity
as measured in terms of code sizes and structures. In the fluid sim-
ulation example, the BSGP implementation has a clear advantage
over the implementation provided in CUDA SDK in terms of code
complexity. Also, while neither implementation is very well op-
timized, the BSGP version is about 50% faster. The X3D parser
example is highly sophisticated, with 82 kernels and 19K lines of
assembly code after compilation. The dataflow of this program

changes constantly with the addition of new functionalities. Imple-
menting the parser using conventional stream programming would
require continuous kernel rewriting and refactorization, and has not
been attempted in previous work. Our BSGP implementation of the
parser, running on the GPU, is up to 15 times faster than an opti-
mized CPU implementation from [Parisi 2003]. In the tessellation
example, we demonstrate that our BSGP thread manipulation prim-
itive fork is capable of improving the performance by a factor of 10
with little extra coding.

2 Related Work

There have been a lot of works on programable graphics systems
and programming languages. We refer the reader to [Buck et al.
2004] for a concise overview. In the following, we will only review
the most closely related references.

An earlier work [Peercy et al. 2000] presented a programmable
shading system on top of early OpenGL’s rendering pipeline. It
abstracts OpenGL as a virtual SIMD processor with each render
pass as an instruction. Shaders in a high level language are then
compiled to this virtual architecture. Our BSGP is analogous to this
work in that both implement a higher level programming model on a
low level architecture through compilation. However, while [Peercy
et al. 2000] targets programmable shading on the early OpenGL
pipeline, our BSGP is designed for general purpose computation
on modern GPUs.

Several high level programming languages have been developed for
GPU programming. Shading languages including HLSL, Cg [Mark
et al. 2003], and GLSL are graphics oriented and meant to be used
with graphics APIs (OpenGL, DirectX, etc.). Applications writ-
ten in these languages must execute explicit graphics API calls to
organize data into streams and launch kernels. Computation is ex-
pressed as a sequence of shading operations on graphics primitives,
not kernels acting on streams [Buck et al. 2004].

Brook [Buck et al. 2004] virtualizes the graphics pipeline and ab-
stracts GPUs as general stream processors. By doing so it enables
general purpose programming of the GPU without graphics API
calls. CUDA [NVIDIA 2007] goes a step further to support ad-
vanced features like scattering and local communication in hard-
ware, leading to a considerably more flexible environment. Both
languages are based on the stream model and require explicit han-
dling of data dependencies.

Sh [McCool and du Toit 2004] provides a meta-programming li-
brary operating on stream kernels. With Sh, kernels may be dy-
namically constructed and invoked using a C++ syntax. Sh also
offers an algebra [McCool et al. 2004] for manipulating kernels
as first class objects, enabling generation of new kernels by com-
bining existing modules. The meta-programming framework of Sh
and BSGP is concerned with different aspects of GPU program-
ming: BSGP is for GPU programming based on the BSP model,
whereas meta-programming is a general technique applicable to
any programming model. Sh simplifies kernel writing while ig-
noring inter-kernel data dependencies. In contrast, BSGP abstracts
data dependencies while ignoring module manipulation.

Accelerator [Tarditi et al. 2006] implements a data parallel array
library on the GPU. Although data dependencies are hidden, the
library is limited to a set of predefined parallel operators such as
element-wise arithmetic, reduction and transformation. Even with
an optimizing compiler, it would be extremely difficult to achieve
a similar level of flexibility and efficiency as provided by a stream
architecture. For instance, a KD-tree accelerated ray tracer can be
implemented with a single stream kernel [Horn et al. 2007; Popov
et al. 2007], but it would be very difficult to map the same ray tracer
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Figure 2: SPMD constructs - barrier and collective operation.

to data parallel arrays without significant loss of performance.

Programmable graphics hardware has long been used for procedu-
ral texturing and shading in graphics applications [Olano and Las-
tra 1998; Peercy et al. 2000; Proudfoot et al. 2001]. Recently
there has been much work on general purpose computation us-
ing GPUs (GPGPU). Examples include common primitive opera-
tions such as linear algebra, FFT [NVIDIA 2007], scan [Sengupta
et al. 2007] and sorting [Gress and Zachmann 2006; Harris et al.
2007], as well as application-specific modules for image process-
ing [NVIDIA 2007] and ray tracing [Foley and Sugerman 2005;
Horn et al. 2007; Popov et al. 2007]. In most of these examples,
the algorithms perform similar operations on a large number of in-
dependent elements and are thus easy to map to the stream archi-
tecture. For more complicated applications, stream implementation
requires multiple kernels and intermediate streams. The design of
such streams and kernels is extremely difficult for even moderately
complex applications.

The BSP model provides a simple and practical framework for par-
allel computing in general [Valiant 1990]. The fundamental proper-
ties of BSP include easy programming, independence of target ar-
chitectures, and predictable performance [Skillicorn et al. 1997]. In
the context of coarse grain parallelism, the BSP model has demon-
strated simpler programming and predictable performance on a va-
riety of architectures [Hill et al. 1998]. As far as we know, BSGP is
the first GPU programming language based on BSP.

Comparing to alternate models in traditional parallel computing
(e.g., PRAM [Fortune and Wyllie 1978]), the BSP model has two
distinguishing properties: disallowing peer-to-peer communication
except at barriers and ignoring inter-processor data locality. Both
properties match stream processing well, in which arbitrary inter-
thread communication is infeasible within a kernel and persistent
local storage does not physically exist.

3 BSGP and Stream Processing

In this section we illustrate the difference between BSGP and
stream processing using a simple source code example. We start
by explaining a few basic concepts. BSGP and stream processing
are different forms of SPMD (single program multiple data) pro-
cessing, in which a number of threads execute the same program in
parallel. The total number of threads is called thread size. Each
thread is given a rank, a unique integer from 0 to size − 1, which
distinguishes it from other threads.

Barrier A barrier is a form of synchronization in SPMD program-
ming. When a barrier is reached, execution is blocked until all
threads reach the same barrier (see Fig. 2(a)). In stream process-
ing, waiting for a kernel launch to terminate is the only form of
barrier. Although CUDA-capable hardware supports local synchro-
nization, a barrier of all threads still cannot be achieved within a
kernel in general. Note that a kernel launch is traditionally called a
pass in GPU programming.

Listing 1 Find neighboring triangles (BSGP version)
/*
input:

ib: pointer to element array
n: number of triangles

output:
pf: concatenated neighborhood list
hd: per-vertex list head pointer

temporary:
owner: associated vertex of each face

*/
findFaces(int* pf, int* hd, int* ib, int n){

spawn(n*3){
rk = thread.rank;
f = rk/3; //face id
v = ib[rk]; //vertex id
thread.sortby(v);
//allocate a temp list
require

owner = dtempnew[n]int;
rk = thread.rank;
pf[rk] = f;
owner[rk] = v;
barrier;
if(rk==0||owner[rk-1]!=v)

hd[v] = rk;
}

}

Collective Operation A collective operation is an operation that
has to be performed simultaneously by all threads. In SPMD pro-
gramming, a collective operation is syntactically similar to an ordi-
nary sequential operation except it operates on all threads semanti-
cally. The input of one thread may affect the output of other threads.
For example, a collective prefix sum may be defined as scan(x),
and x’s values in all threads are collected to form a vector. After a
barrier synchronization, the prefix sum is computed using the vec-
tor. The result is then redistributed to each thread’s x, and the code
execution continues (see Fig. 2(b)). Typical collective operations
require barriers internally and thus are rare in stream programming.

3.1 Source Code Example

The source code example solves the following problem: Given a
triangle mesh’s connectivity, compute a list of the one-ring neigh-
boring triangles for each vertex. The mesh contains m vertices and
n triangles. Connectivity is given as an array of 3n integers ranging
from 0 to m − 1, with each three consecutive integers representing
the three vertex indices of a triangle. The BSGP source code for
solving this problem is used in the X3D parser example in the re-
sults section for vertex normal computation.

Sorting Algorithm We solve the above problem using the follow-
ing sorting algorithm: each triangle is triplicated and associated
with its three vertices. The triplicated triangles are sorted using the
associated vertex indices as the sort key. After sorting, triangles
sharing the same vertex are grouped together to create a concate-
nated list of all vertices’ neighboring triangles. Each sort key is
then compared to its predecessor’s to compute a pointer to the be-
ginning of each vertex’s list.

Listing 1 is an implementation of the above sorting algorithm us-
ing BSGP. The spawn statement creates 3n threads on the GPU
to execute the enclosed statements. thread.sortby is a rank
adjusting primitive which reassigns thread ranks to match the order
of sort keys (see Appendix A for details). This primitive preserves
each sort key’s correspondence with other data. To compare a sort
key with that of a predecessor, all sort keys are stored in a temporary
list owner. After a barrier synchronization, the predecessor’s sort
key is then gathered from the list and a comparison is performed to
yield each vertex’s head pointer. This program matches the algo-



rithm description step by step – much like in traditional sequential
programming.

Listing 2 Find neighboring triangles (CUDA version)
#include "cudpp.h"
const int szblock=256;

global void
before sort(unsigned int* key,int* ib,int n3){

int rk=blockIdx.x*szblock+threadIdx.x;
if(rk<n3){

key[rk]=(ib[rk]<<16u)+rk/3;
}

}

global void
after sort(int* pf,int* owner,unsigned int* sorted,int n3){

int rk=blockIdx.x*szblock+threadIdx.x;
if(rk<n3){

int k=sorted[rk];
pf[rk]=(k&0xffff);
owner[rk]=(k>>16u);

}
}

global void
make head(int* hd,int* owner,int n3){

int rk=blockIdx.x*szblock+threadIdx.x;
if(rk<n3){

int v=owner[rk];
if(rk==0||v!=owner[rk-1])

hd[v]=rk;
}

}

/*
interface is the same as BSGP version
temporary streams:

key: sort keys
sorted: sort result
temp1: used twice for different purpose

1. temporary stream 1 for cudppSort
2. associated vertex of each face (owner)

temp2: temporary stream 2 for cudppSort
*/
void findFaces(int* pf,int* hd,int* ib,int n){

int n3=n*3;
int ng=(n3+szblock-1)/szblock;
unsigned int* key;
unsigned int* sorted;
int* temp1;
int* temp2;
cudaMalloc((void**)&key,n3*sizeof(unsigned int));
cudaMalloc((void**)&sorted,n3*sizeof(unsigned int));
cudaMalloc((void**)&temp1,n3*sizeof(int));
cudaMalloc((void**)&temp2,n3*sizeof(int));
before sort<<<ng,szblock>>>(key,ib,n3);
//call the CUDPP sort
{

CUDPPSortConfig sp;
CUDPPScanConfig scanconfig;
sp.numElements = n3;
sp.datatype = CUDPP UINT;
sp.sortAlgorithm = CUDPP SORT RADIX;
scanconfig.direction = CUDPP SCAN FORWARD;
scanconfig.exclusivity = CUDPP SCAN EXCLUSIVE;
scanconfig.maxNumElements = n3;
scanconfig.maxNumRows = 1;
scanconfig.datatype = CUDPP UINT;
scanconfig.op = CUDPP ADD;
cudppInitializeScan(&scanconfig);
sp.scanConfig = &scanconfig;
cudppSort(sorted, key, temp1, temp2, &sp, 0);
cudppFinalizeScan(sp.scanConfig);

}
after sort<<<ng,szblock>>>(pf,temp1,sorted,n3);
make head<<<ng,szblock>>>(hd,temp1,n3);
cudaFree(temp2);
cudaFree(temp1);
cudaFree(sorted);
cudaFree(key);

}
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Figure 3: Source code reuse in the stream model and the BSP
model. For simplicity, we omit the internals of global merge passes
and treat it as a single function. (a) In Listing 2, sort is called
through CPU wrapper cudppSort. Three kernels and a tem-
porary stream key are required; (b) In Listing 1, after inline
expansion, local sort is bundled with the preceding code in
findFaces. Two kernels are generated and key is unnecessary.

Listing 2 exhibits a CUDA (stream processing) implementation of
the same algorithm, written using a sort routine from CUDPP [Har-
ris et al. 2007]. Due to the lack of a more flexible sort, triangle
and vertex IDs are packed together into the sort key. The program
contains three kernels: before sort prepares sort key for call-
ing CUDPP, after sort unpacks the sorting result and fills the
concatenated list of neighboring triangles, and finally make head
computes head pointers. The findFaces function launches
these kernels, calls the sorting primitive, and maintains temporary
streams.

Compared with the CUDA version, the BSGP implementation is
much easier to read, write and maintain. In the following, we com-
pare other aspects of these two programs. Note that both programs
are for demonstrating programming styles and neither is optimized
for performance.

3.2 Explicit vs. Implicit Data Flow

The CUDA source code in Listing 2 is divided into several kernels.
Data flow is explicitly specified via parameter passing, and tempo-
rary streams are allocated to hold parameter values, resulting in a
larger code size. On the other hand, the BSGP version is written as a
single compact procedure through the use of barriers and collective
operations. From the programmer’s perspective, local variables are
visible across barriers, and no explicit parameter passing is needed.
The actual data flow is deduced by the compiler when the stream
code is generated. Temporary streams are automatically allocated
and freed by the compiler when appropriate.

3.3 Efficient Code Reuse

As discussed in [Sengupta et al. 2007], source code reuse has been
a serious problem in traditional GPU development. In a stream
environment, a method that consists of multiple kernels like sort-
ing is typically reused as a CPU wrapper function, since kernel
launch is impossible inside another kernel. One such example is
the cudppSort in Listing 2. It performs a local sorting pass and a
number of global merging passes on the input stream. Under such
a setting, sort key preparation and local sorting are done in two
separate passes, as illustrated in Fig. 3(a). A temporary stream is
allocated to pass the sort key.

Note that the key preparation before sort and local sorting
local sort can actually be bundled in a single kernel without
using a temporary stream for the sort key. Separating them results
in an extra kernel launch and an extra stream. This is inefficient.



Although it is possible to do the bundling manually, doing so
requires local sort to be separated from the cudppSort
method. This violates information hiding and considerably hinders
source code reuse.

The BSP model allows barrier synchronization within a program,
making collective functions possible. In an inlined collective func-
tion containing barriers, all code before the first barrier belongs to
the preceding superstep by definition. The same may be applied to
code after the last barrier. Bundling is thus achieved automatically
as in Fig. 3(b).

3.4 Source Code Maintenance

To improve the performance of stream programs, programmers usu-
ally strive to manually bundle source code as tightly as possible in
a single kernel even though these programs are semantically unre-
lated. For example, in Fig. 3(a), before sort and local sort
can be bundled in a single kernel. However, such manual bundling
will cause maintenance issues. For example, adding a function call
in a stream program would require the surrounding kernel to be
split into two. Rescheduling function calls and computation in other
kernels requires all affected kernels to be refactorized to reflect the
new data flow. Removing calls requires surrounding kernels to be
merged to avoid performance degradation. Additional stream man-
agement code also needs to be updated manually throughout the
above process. These difficulties considerably hinder source code
maintenance.

With BSGP, multi-superstep algorithms may be abstracted as col-
lective functions. Being syntactically identical, a collective func-
tion call such as thread.sortby(x) can be manipulated just
like an ordinary function call. All necessary modifications to the
final stream program are automatically made by the compiler.

4 Compiling BSGP Programs

In this section we describe the compilation of a BSGP program into
stream processing code.

4.1 Compiler Design Issues

As mentioned, first we need to implement the barrier synchroniza-
tion. The technical issue we need to resolve is that the stream pro-
cessing model completely decouples physical processing units and
logical threads. This is typically implemented in hardware without
software control. Unlike software thread scheduling in traditional
parallel computing environments like CHARM++ [Kale and Krish-
nan 1993], not all threads are executed simultaneously. Instead,
threads are dynamically distributed to available processing units.
Resources (e.g., registers) for holding thread contexts are recycled
upon thread completion. For these reasons persistent logical thread
contexts do not physically exist and thus cannot be taken for granted
as in previous BSP implementations (e.g., [Hill et al. 1998]). To
address this issue, we design the compiler such that it generates ad-
ditional context saving code when compiling a BSGP program for
stream processors.

For better performance, the context saving code produced by the
compiler should be comparable or better than hand-written tempo-
rary stream management programs. Observe that the time needed
to load and store variables mostly depends on the memory band-
width and is not much affected by code generation. Based on this
observation, our BSGP compiler focuses on minimizing the total
amount of stored values, where a value means the evaluation result
of an assignment’s right hand side. We use the following strategy:
a value is saved if and only if it is used in supersteps following its
defining superstep. The BSGP compiler also carries out several im-

portant optimizations such as dead code elimination and conditional
constant propagation to further reduce saved values.

Another technical issue is to minimize peak memory consumption.
The naive practice of simply allocating one stream for each stored
value would quickly exhaust the memory for any problem size of
practical interest. The total number of allocated temporary streams
has to be minimized under two constraints: 1) one temporary stream
has to be allocated for each saved value; 2) values that may be used
simultaneously cannot be assigned the same stream. We deal with
this problem in a way analogous to the register allocation prob-
lem in compiler theory, with temporary streams being registers.
Since supersteps are organized sequentially, we are able to compute
the optimal solution in polynomial time using graph optimization
[Ford and Fulkerson 1962].

A final challenge is about locality. Modern GPUs heavily rely
on locality to achieve high performance. Severe performance
penalties apply if threads with neighboring physical ranks per-
form heterogeneous tasks, e.g., accessing non-coherent memory
addresses. Therefore, it is desirable to adjust thread ranks so as
to match physical locality with algorithmic locality. We extend
the original BSP model by introducing rank reassigning barriers,
barrier(RANK REASSIGNED). Since physical thread ranks
cannot be changed within a kernel, a logical rank reassignment is
performed by shuffling stored thread contexts at a barrier.

4.2 Compilation Algorithm

A BSGP program is translated to a stream program through the
following steps.

1. Inline all calls to functions containing barriers.
2. Perform optimizations to reduce data dependencies.
3. Separate CPU code and GPU code. Generate kernels and ker-

nel launching code.
4. Convert references to CPU variables to kernel parameters.
5. Find all values that need to be saved, i.e., values used outside

the defining superstep.
6. Generate code to save and load the values found in Step 5.
7. Generate temporary stream allocations.

Listing 3 is the pseudo code of the BSGP program after executing
Step 1 on the program in Listing 1, i.e., expanding the inline func-
tion thread.sortby, which contains two supersteps and uses
barrier(RANK REASSIGNED) to reassign thread ranks.

Listing 4 is the pseudo code of the final generated stream program.
In the following, we use Listing 3 as an example to illustrate the
above compiling steps.

Step 2 performs classical compiler optimizations on the BSGP pro-
gram to prevent unused variables or variables holding constant val-
ues from being saved and thus reduces context saving costs. One
scheme we used is that of constant propagation from [Wegman and
Zadeck 1991], with which constant values are propagated through
assignments. In a BSGP program, thread.rank is a constant
value in supersteps where it is not reassigned. Therefore, in List-
ing 3, rk1 can be replaced by thread.rank, preventing it from
being unnecessarily saved to memory.

Dead code elimination [Cytron et al. 1991] is another scheme we
employed. It eliminates all source code not contributing to the pro-
gram’s output. Cross-superstep data dependencies in dead code
may be eliminated using this optimization.

In Step 3, the BSGP program is split into a sequential set of su-
persteps according to barriers. For each superstep, a kernel is cre-
ated that contains the code in this superstep. In the spawning func-



Listing 3 Extended version of Listing 1 by expanding the inline
function thread.sortby.
findFaces(int* pf, int* hd, int* ib, int n){

spawn(n*3){
//superstep 1
rk0 = thread.rank;
f = rk0/3; v = ib[rk0];
//BEGIN OF thread.sortby
//allocate an internal temporary stream
require

sorted id = dtempnew[thread.size]int;
local sort(sorted id, v);
barrier(RANK REASSIGNED);
require

global merge(sorted id);
//superstep 2
//internal implementation of rank reassigning
thread.oldrank = sorted id[thread.rank];
//END OF thread.sortby
//allocate a temp list
require

owner = dtempnew[n]int;
rk1 = thread.rank;
pf[rk1] = f;
owner[rk1] = v;
barrier;
//superstep 3
if(rk1==0||owner[rk1-1]!=v)

hd[v] = rk1;
}

}

Value f v rk0 rk1
Definition Step 1 1 1 2
Utilization Steps 2 2,3 1 2
Save yes yes no no

Table 1: Data dependency analysis result of Listing 3

tion, spawn blocks are replaced by corresponding kernel launching
code. CPU code inserted via a require block is placed before the
containing kernel’s launching code.

Step 4 deduces all parameters that need to be passed to GPU kernels
from the CPU. This is done by assuming all variables that are ac-
cessed at least once by both CPU and GPU are parameters. Kernel
prototype and launching code are then generated, and parameter ac-
cess in BSGP code is converted to specific instructions. For exam-
ple, in Listing 3, sorted id is a parameter. Writes to parameters
in the GPU are disallowed and reported as compiling errors.

Step 5 finds for each value its defining superstep by locating its
corresponding assignment. It then enumerates all uses of this value
to see whether it is used in a different superstep. The value has to
be saved if such a use exists. Table 1 summarizes the analysis result
of Listing 3.

In Step 6, the analysis result of Step 5 is used to generate the ac-
tual value saving and loading code. For each value, the value saving
code is generated at the end of its definition superstep, and the value
loading code is generated at the beginning of each utilization super-
step.

To support rank reassigning barriers, the value loading code gen-
erated above needs to be modified. The basic idea is to perform
a logical rank reassignment by shuffling stored thread contexts
at a barrier. We require each thread to set thread.oldrank
to its previous rank after a barrier(RANK REASSIGNED), as
shown in Listing 3. The compiler then moves the value load-
ing code to immediately after the thread.oldrank assignment,
and thread.oldrank is used when addressing the temporary
stream. Values used in subsequent supersteps are loaded in a simi-
lar manner and moved to newly allocated temporary streams using

Listing 4 Pseudo code of final stream program for Listing 3
kernel pass1(int* ib, int* sorted id, int* t0, int* t1){

//superstep 1
f = thread.rank/3; v = ib[thread.rank];
local sort(sorted id, v);
t0[thread.rank] = f; //value saving
t1[thread.rank] = v; //value saving

}

kernel pass2(int* sorted id, int* pf, int* owner,
int* t0, int* t1, int* t2){

//superstep 2
thread.oldrank = sorted id[thread.rank];
//context shuffling for rank reassinging
//load values from previous superstep using oldrank
f = t0[thread.oldrank];
v = t1[thread.oldrank];
pf[thread.rank] = f;
owner[thread.rank] = v;
//v is moved to temporary stream t2 using new rank
t2[thread.rank] = v;

}

kernel pass3(int* hd, int* owner, int* t2){
//superstep 3
v = t2[thread.rank]; //value loading
if(thread.rank==0||owner[thread.rank-1]!=v)

hd[v] = thread.rank;
}

findFaces(int* pf, int* hd, int* ib, int n){
thread.size = n*3;
sorted id = dtempnew[thread.size]int;
t0 = newstream(thread.size);
t1 = newstream(thread.size);
//launch superstep 1
launch(thread.size,

pass1(ib, sorted id, t0, t1));
global merge(sorted id);
owner = dtempnew[n]int;
t2 = newstream(thread.size);
//launch superstep 2
launch(thread.size,

pass2(sorted id, pf, owner, t0, t1, t2));
freestream(t1);
freestream(t0);

//launch superstep 3
launch(thread.size,

pass3(hd, owner, t2));
freestream(t2);

//free lists allocated by dtempnew
dtempfree();

}

reassigned ranks. Subsequent supersteps may then proceed using
new ranks. This is illustrated in pass2 in Listing 4.

Finally, temporary streams are generated and assigned to saved val-
ues. We use a graph optimization algorithm to minimize peak mem-
ory consumption, as described in Section 4.3.

4.3 Minimization of Peak Memory Consumption

In this subsection, we use the simple BSGP program shown in List-
ing 5 as an example to explain our memory consumption optimiza-
tion algorithm. Table 2 lists the values required to be saved in List-
ing 5.

We first build a directed acyclic graph for all supersteps and saved
values according to Table 2. As shown in Fig. 4(a), for each super-
step, two nodes are created: one for the beginning of the superstep’s
execution and the other for the end. These nodes are connected by
two kinds of edges. First, each node is connected to its succeed-
ing node in execution order by a non-value edge. Second, for each
saved value, the end node of its definition superstep is connected
to the beginning node of its last utilization superstep by a value



Listing 5 Testing program for memory optimization.
void test(int* a){

spawn(1){
//superstep 1
v0 = a[0]; v1 = a[1];
barrier;
//superstep 2
v2 = v0+v0;
barrier;
//superstep 3
v3 = v1+v2;
barrier;
//superstep 4
v4 = v3+v1;
a[i] = v4;

}
}

Value v0 v1 v2 v3
Definition Step 1 1 2 3
Utilization Steps 2 3, 4 3 4

Table 2: Data dependency analysis result of Listing 5.

edge. We also denote the beginning node of the first superstep as
the source, and the end node of the last superstep as the sink.

An allocated temporary stream can then be mapped to a unique path
from the source to the sink by connecting the value edges for all val-
ues assigned to the stream with non-value edges. The red path in
Fig. 4(a) is an example. Minimizing the number of allocated tempo-
rary streams is equivalent to covering all value edges using a min-
imal number of paths from the source to the sink, i.e., a minimum
flow in the graph, which is a classical graph theory problem [Ford
and Fulkerson 1962] and the optimal solution can be computed in
polynomial time.

To apply the minimum flow algorithm, each value edge is assigned
a minimal flow requirement of one and a capacity of one. Each non-
value edge is assigned with a minimal flow requirement of zero and
a capacity of +∞. The resulting graph is drawn in Fig. 4(b).

The minimum flow for Fig. 4(a) is shown in 4(c). The correspond-
ing temporary stream allocation allocates v0, v2, v3 in one stream
and v1 in another stream, as shown in the colored paths.

4.4 Implementation

We implemented the BSGP compiler in the CUDA GPU stream
environment. The compilation of a BSGP program consists of the
following stages:

1. The source code is compiled to static single assignment form
(SSA) as in [Cytron et al. 1991].

2. The algorithm in Section 4.2 is carried out on each spawn
block’s SSA form.

3. Generated kernels are translated to CUDA assembly code, on
which the CUDA assembler is applied. The resulting binary
code is inserted into the CPU code as a constant array, and
CUDA API calls are generated to load the binary code.

4. The object file or executable is generated from the CPU code
by a conventional CPU compiler.

We choose the SSA representation mainly for simplification of the
data dependency analysis. Since there is only one assignment for
each SSA variable, the concept of value as defined in Section 4.1 is
equivalent to that of an SSA variable, and this considerably simpli-
fies data dependency analysis. Operating on SSA also allows us to
directly generate optimized assembly code without calling CUDA’s
built-in high-level compiler and thus reduces compilation time sig-
nificantly. CUDA specific optimizations, such as register allocation
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(a) Constructed graph. Edges for values are labeled with names.
Nodes are labeled with corresponding superstep.
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(c) Minimum flow. Edges are labeled with flow. Flow paths are colored.

Figure 4: Minimum flow for temporary stream optimization. Nodes
corresponding to the same superstep are grouped in grey boxes.

and instruction scheduling, are not sacrificed with our choice since
a majority of them are handled in the assembler.

In addition to its stream environment, CUDA offers additional fea-
tures including local communication and cached memory read.
Taking advantage of these features is important for efficient imple-
mentation of many parallel primitives including scan. As the fea-
tures do not conflict with BSGP, we provide the programmer with
access to them through an interface similar to CUDA’s original high
level API and optionally through inline assembly. CUDA also pro-
vides a built-in profiler for kernels. To utilize it for BSGP programs,
our compiler generates a log file to map generated kernels to BSGP
source code positions.

Although our current implementation is for the CUDA stream en-
vironment, the compilation algorithm does not rely on CUDA spe-
cific features. Therefore it should be possible to port BSGP to other
stream environments, such as ATI’s CTM [ATI 2006].

Limitation A limitation of our BSGP compilation algorithm is its
inability to handle flow control across barriers. The original BSP
model permits barriers to be placed in flow control structures, as-
suming all barriers are reached by either all threads or no threads.
This feature is useful for architectures on which the whole process-
ing is done in parallel. In stream processing, however, a control
processor is available for uniform flow controls and the need for
such barriers is reduced. This limitation is inherited from stream
processing, where a barrier may only be achieved by kernel launch
termination.

5 BSGP Language Constructs

BSGP is a C like language with special constructs dedicated for
BSP programming on the GPU. In this section we discuss several
constructs related to GPU programming.

spawn and barrier As illustrated in Listing 1, a spawn
statement executes a block of GPU code using the total num-
ber of threads as a parameter. A barrier synchronization is in-
dicated by a barrier statement. A barrier may appear di-
rectly in BSGP code or in functions inlined into BSGP code.
barrier(RANK REASSIGNED) is a special type of barrier for
reassigning thread ranks, as explained in Section 4.

In BSGP programs, we assume variables defined in spawn blocks
are local to individual threads. Everything else resides in video
memory, i.e., the global memory shared by all threads. For exam-



ple, in Listing 1, variable f is local to each thread, while memory
pointed to by pf is global.

Cooperation with CPU using require In stream processing,
certain crucial operations such as resource allocation and detailed
kernel launch configuration are only available to the control proces-
sor. To address this issue, we allow the control processor code to be
inserted into BSGP source code as a require statement block. At
run time, code inserted this way is executed before the containing
superstep is launched.

Emulating Thread Manipulation (fork and kill) For appli-
cations that involve data amplification/reduction, such as the adap-
tive tessellation example shown later in this paper, it is desirable to
create/destroy threads to improve load balancing as the application
data is amplified/reduced. In coarse-grain parallel programming,
thread manipulation is accomplished by primitives such as fork and
kill. Unfortunately current GPUs do not support these thread ma-
nipulation primitives; only the total number of threads is specified
at a kernel launch. To address this problem, we emulate thread ma-
nipulation through a set of collective APIs using a multi-superstep
algorithm.

Listing 6 illustrates our thread manipulation APIs using the sample
code for extracting numbers from different regions of a plain text
file. Utility routines are omitted for simplicity. An expanded ver-
sion of this source code is used for parsing XML fields in the X3D
parser shown later in this paper.

Listing 6 Number extraction. Utility routines are omitted for sim-
plicity
/*
extract numbers from plain text
input:

begin/end: offset to begin/end of regions
n: number of regions to parse

returns:
parsed numbers

*/
float* getNumbers(int* begin, int* end, int n){

float* ret = NULL;
spawn(n){

id = thread.rank;
s = begin[id]; e = end[id];
pt = s+thread.fork(e-s+1);
c = charAt(pt-1); c2 = charAt(pt);
thread.kill(isDigit(c)||!isDigit(c2));
require

ret = dnew[thread.size]float;
ret[thread.rank] = parseNumber(pt);

}
return ret;

}

Initially, a thread is spawned for each region. The thread forks an
additional thread for each character in the region. All threads ex-
cept those corresponding to the first letter of a number are killed.
Remaining threads proceed to extract the number and write the re-
sult to a newly allocated list. A detailed description of fork and
kill is given later in Appendix A.

Thread manipulation is implemented by adjusting thread.size
in the require block and reassigning thread ranks. No additional
compiler intervention is needed.

Reducing barriers using par The BSGP compilation algorithm
always bundles the first superstep of a function with its caller. This
can sometimes lead to suboptimal results because of the sequen-
tial order of BSGP supersteps. Listing 7 provides an example. In
both sort idx(A) and sort idx(B), the local sort part
should have been bundled into the superstep that generates A and

B. However, our compiler simply inlines the sort idx code and
yields three supersteps as follows:

sorter(int n){
spawn(n){

A = functionA();
B = functionB();
//first sort idx
require

sorted idA = dtempnew[n]int;
local sort(sorted idA, A);
barrier;
require

global merge(sorted idA);
idxA = sorted idA[thread.rank];
//second sort idx
require

sorted idB = dtempnew[n]int;
local sort(sorted idB, B);
barrier;
require

global merge(sorted idB);
idxB = sorted idB[thread.rank];
//more code

}
}

In theory it is possible for a compiler to automatically deduce that
sort idx(B) is independent of the first sort sort idx(A).
In practice, routines like sort idx often use low-level features
such as local communication extensively, making the deduction ex-
tremely difficult. For this reason, we provide the par construct to
let the programmer control the bundling behavior by restructuring
the code. A par may be used in Listing 7 to reduce one pass as
shown in Listing 8.

The par construct specifies that all statements in the following
block are independent of each other. During compilation, the com-
piler aligns barriers in the statements and bundles the corresponding
supersteps together as illustrated in Fig. 5. After inline expansion
and par expansion, Listing 8 yields an optimized result with two
supersteps:

sorter(int n){
spawn(n){

A = functionA();
B = functionB();
//the two sorts in par
require

sorted idA = dtempnew[n]int;
local sort(sorted idA, A);
require

sorted idB = dtempnew[n]int;
local sort(sorted idB, B);
barrier;
require{

global merge(sorted idA);
global merge(sorted idB);

}
idxA = sorted idA[thread.rank];
idxB = sorted idB[thread.rank];
//more code

}
}

The par construct has the limitations of neither including any
optimization nor allowing more detailed control over superstep
bundling. Nevertheless, par can handle simultaneous independent
calls to the same collective function, which is what typically occurs
in applications.

Communication Intrinsics (thread.get and thread.put)
BSGP also supports remote variable access intrinsics for thread
communication. The interface is analogous to that of the BSPlib
[Hill et al. 1998].



Listing 7 Pseudo code of sort idx and a program that computes
sort index for two values
inline int sort idx(int x){

require
sorted id = dtempnew[n]int;

local sort(sorted id, x);
barrier;
require

global merge(sorted id);
return sorted id[thread.rank];

}

sorter(int n){
spawn(n){

A = functionA();
B = functionB();
idxA = sort idx(A);
idxB = sort idx(B);
//more code

}
}

 par

step1 step2... ...
step3 step4

... ...step1
step3

step2
step4

Expanded

Par construct

Figure 5: Illustration of the par construct. Barriers between step
1,2 and 3,4 are aligned. Corresponding passes are then merged.

thread.get(r, v) gets v’s value in the previous superstep
from the thread with rank r. If r is not a valid rank, an undefined
result is returned.

thread.put(r, p, v) stores v’s value to p in the thread with
rank r. The stored value can only be read after the next barrier. If
r is not a valid rank, no operation is performed. put is considered
to be an assignment to p.

Handling communication intrinsics in the BSGP compiler is sim-
ple. Note that communication intrinsics are always used together
with a barrier. This implies that the affected variable is always
used across the barrier, and a temporary stream has already been
allocated. Each communication operation is then converted to a
read/write on the stream, using the source/target thread rank as the
index. Also, in the case of a thread.put, the default saving code
for the affected variable is removed.

Using communication routine thread.get, we further simi-
plify the BSGP program in Listing 1. As shown in Listing 9,
thread.get is used to get the preceding thread’s sort key by
fetching v’s value before the barrier from thread rk-1. With
this simplification the temporary list owner is removed.

Primitive Operations We provide a library of parallel primitives
as collective functions. See Appendix A for details. All primi-
tives are entirely implemented in the BSGP language without spe-
cial compiler intervention. Programmers may write new primitives
with similar interfaces.

While basic primitives like scan can be implemented portably us-
ing the communication intrinsics, currently we opt to make exten-
sive use of CUDA specific features for maximal performance. For
example, our optimized scan is 6.5× faster than a portable version
of the same algorithm for an array of 1M elements. However, this
does not affect portability of BSGP applications, as explicit com-
munication may be avoided by using the optimized primitives.

Listing 8 par example
sorter(int n){

spawn(n){
A = functionA();
B = functionB();
par{

idxA = sort idx(A);
idxB = sort idx(B);

}
//more code

}
}

Listing 9 Find neighboring triangles (BSGP updated version using
communication)
findFaces(int* pf, int* hd, int* ib, int n){

spawn(n*3){
rk = thread.rank;
f = rk/3; //face id
v = ib[rk]; //vertex id
thread.sortby(v);
rk = thread.rank;
pf[rk] = f;
barrier;
if(rk==0||thread.get(rk-1,v)!=v)

hd[v] = rk;
}

}

6 Experimental Results

In this section, we use a few applications to demonstrate the advan-
tages of BSGP over the stream programming language CUDA. As
mentioned, the most important advantage of BSGP is that it is easy
to read, write, and maintain programs. This assessment is neces-
sarily subjective, and the best way to verify it is to examine BSGP
source code and compare it with CUDA source code. For this rea-
son, we provide the source code of all examples mentioned in the
paper as supplementary materials in the DVD-ROM.

In addition to examining source code, we can compare the sizes
of BSGP and CUDA source code as an objective measure of code
complexity. We also compare the performance and memory con-
sumption of the BSGP and CUDA code to ensure that BSGP’s
ease-of-programming does not come at the cost of performance and
memory consumption. Our hardware platform for these compar-
isons is a PC with an Intel Xeon 3.7GHz CPU and a GeForce 8800
GTX graphics card.

GPU Ray Tracing Our first example is GPU ray tracing. We im-
plemented the GPU ray tracing algorithm in [Popov et al. 2007]
using both BSGP and CUDA. The algorithm is based on stackless
kd-tree traversal and ray packets. It requires the construction of
a kd-tree with “ropes” as a preprocess. Note that, as the cached
memory read is exposed in CUDA via linear texture, the prefetch-
ing scheme using shared memory in [Popov et al. 2007] becomes
unnecessary and packet traversal loses most of its memory latency
advantages. For this reason, we just implemented a non-packet ray
tracer for maximal flexibility and minimal register usage.

[Popov et al. 2007] uses a single kernel to do both ray tracing and
shading. This complicates the ray tracing kernel and increases reg-
ister usage. It also reduces the number of simultaneously executing
threads (GPU occupancy) and hinders performance. Our ray tracer
performs ray tracing and other computation such as shading and
ray generation in different kernels. This modification results in bet-
ter GPU occupancy (50% compared to the 33% reported in [Popov
et al. 2007]) and a 2 ∼ 3 times speed up over [Popov et al. 2007].

Now we compare the code complexity and performance of the



(a) FairyForest (b) Robots (c) Kitchen
Figure 6: Test scenes for GPU ray tracing. (a) FairyForest with
174K triangles and one point light. (b) Robots with 72K triangles
and three point lights. The image is generated with one ray bounce.
(c) Kitchen with 111K triangles and one point light. The image
is generated with four ray bounces. All images are rendered at
1024 × 1024 image resolution.

BSGP and CUDA implementations. As summarized in Table 3,
BSGP has a clear advantage in code complexity, with a code size
roughly 40% less than that of CUDA. More importantly, by ex-
amining the source code the reader will see that the BSGP source
code naturally follows the ray tracing algorithm: three high level
GPU functions in the BSGP code correspond to eye ray tracing, re-
flection/refraction ray tracing, and shadow ray tracing and shading
computation respectively. In contrast, CUDA requires the program-
mer to manually optimize stream/kernel organization and manage
temporary streams, resulting in ten kernels. The more compact
BSGP source code also makes maintenance easier.

Code complexity CUDA BSGP Reduction
Code lines 815 475 42%
Code bytes 19.0k 12.1k 36%
# GPU funcs 10 3 70%

Table 3: Code complexity comparison. “# GPU funcs” is the num-
ber of top-level GPU functions, i.e., kernels in CUDA or functions
with spawn in BSGP. All code comments are stripped for fair com-
parison. Source code is available in the supplementary materials.

Table 4 summarizes the performance and memory consumption for
the BSGP and CUDA programs on three standard test scenes. The
test scenes and viewpoints are shown in Fig. 6. The BSGP and
CUDA programs have similar performance and memory consump-
tion. In order to achieve high performance, both programs are care-
fully written and optimized. The same programmer developed both
programs and found the BSGP program to be much easier to write.
Specifically, the BSGP program took around one day to get an ini-
tial implementation and 2 ∼ 3 days for debugging and optimiza-
tion. In comparison, the CUDA program took around 2 ∼ 3 days
for initial coding and 4 ∼ 5 days for debugging and optimization.

Scene FPS Memory usage
CUDA BSGP CUDA BSGP

FairyForest 9.73 9.97 80Mb 80Mb
Robots 3.36 3.42 145Mb 153Mb
Kitchen 4.00 4.61 144Mb 150Mb

Table 4: Comparison for performance and memory consumption.

Particle-based Fluid Simulation We also implemented the “par-
ticle” demo provided in CUDA SDK, using BSGP (see Fig. 7). For
simplicity, we only rewrote the sorting-based simulation module
using BSGP, and reused the non-CUDA GUI code in the demo.

The BSGP version of the module was written in about an hour,
and contains 154 lines of code. Including the GUI code, the final
BSGP project contains 1579 lines of code, and runs at 290 FPS. The
CUDA project contains 2113 lines of code, and runs at 187 FPS.
The line counts exclude comments. Sort modules in the CUDA

Figure 7: Two frames from the particle-based fluid simulation.

project are also excluded for fairness, because BSGP provides a sort
primitive in its library. Frame rates are measured after a simulation
reaches a steady state from the default initial position.

Overall, the BSGP version has a clear advantage over CUDA in
terms of code complexity. Also, while neither implementation is
very well optimized, the BSGP version is about 50% faster. The
BSGP compiler generates more optimal kernel/temporary stream
organization than in the hand-coded CUDA version.

GPU X3D Parser Our next example is a GPU X3D parser. X3D is
the ISO standard for real-time 3D computer graphics and the suc-
cessor to Virtual Reality Modeling Language (VRML). Although
the GPU is the natural choice for rendering X3D scenes, existing
X3D browsers rely on the CPU for parsing X3D files [Parisi 2003;
ARTIS 2004]. This is slow because considerable parsing is required
to convert an X3D file to a format ready for GPU rendering. An ad-
ditional overhead is that the parsing result needs to be copied to the
GPU before rendering. The result is a relatively long wait to load
X3D scenes for display.

We implemented a GPU X3D parser using BSGP. The parsing is ac-
celerated by the GPU and copying of results to the GPU is avoided.
As a result, the loading time of X3D scenes is significantly reduced.
Details of the parsing algorithm are described in the supplementary
material in the DVD-ROM. Note that our X3D parser is only a pro-
totype. We currently only parse data related to rendering and ignore
scripts and other advanced content.

We did not implement the GPU X3D parser using CUDA because
it would be extremely difficult due to the following reasons:

• Implementing the parser on the GPU is far from straightforward.
X3D is composed of many independent constructs. When im-
plementing the parser in BSGP, we found it highly desirable to
add new features incrementally. This allows a unit test to be per-
formed after each addition. Unfortunately, incrementally adding
features to a CUDA program is very difficult because the dataflow
changes with newly-added features and to avoid performance
penalties, all affected kernels must be refactorized to optimize for
the new dataflow.

• The source code complexity would be too high. Our BSGP code
is grouped into 16 top-level GPU functions, with each one or two
functions corresponding to an algorithmic step. For an equivalent
CUDA program, the source code would be scattered among 82
kernels as in our BSGP compilation result.

We benchmarked our X3D parser against the commercial Flux
system [Parisi 2003] and the open source X3DTookKit [ARTIS
2004]. The scenes are downloaded from Flux’s official website:
http://www.mediamachines.com/.

Compressed X3D files are decompressed to plain text format prior
to our benchmark. The loading/parsing time comparison is shown
in Table 5. Our GPU parser is orders of magnitude faster than CPU
parsers. The benefit of the GPU parser is most noticeable for scenes
with high geometry complexity. Even with I/O time included, our



(a) Paladin Woman (b) Building
Figure 8: Rendering results from our X3D parser. (a) Paladin
Woman with 7.03MB plain text and two textures; (b) Building with
1.56MB plain text and 25 textures.

Scene Parser Ttotal TIO Tparse

Fig. 8(a)
Ours 183ms

132ms
51ms

Flux 2948ms 2816ms
X3DTK 3132ms 3000ms

Fig. 8(b)
Ours 609ms

586ms
23ms

Flux 836ms 250ms
X3DTK 2950ms 2370ms

∗ Ttotal for Flux is measured by a daemon program that tracks open
file dialog and pixel color change.

Table 5: X3D loading/parsing time comparison. Ttotal is the total
loading time, i.e., the time span between file name specification and
first frame being ready to render. TIO is the time for loading the raw
X3D file and textures, which is the same for all programs. Tparse =
Ttotal − TIO is the parsing time.

system is still an order of magnitude faster for the scene with de-
tailed geometry in Fig. 8(a).

GPU Adaptive Tessellation The final example is an adaptive tes-
sellation routine described in [Moreton 2001]. The routine is used
in a displacement map based terrain renderer to perform view-
dependent tessellation.

The terrain renderer first generates a fixed amount of initial triangles
and sends them to the tessellator. View dependent tessellation is
then performed to generate tessellated triangles. The displacement
map is looked up to produce the final geometry. The final rendering
is done using OpenGL.

The tessellation routine contains the following steps:

1. View culling: cull input triangles outside the view frustum.
2. Compute view-dependent tessellation factor.
3. Compute output size.
4. Allocate memory to hold final geometry.
5. Generate tessellated triangles.

We implemented the tessellation algorithm using BSGP, both with-
out and with thread manipulation. Instead of spending a lot of time
to optimize the code for high performance, we choose to obtain a
quick implementation in each case.

The implementation without thread manipulation naturally follows
the algorithm steps. The computation is parallelized over all input
triangles, i.e., one thread is created for each input triangle. View
culling is performed using a conditional judgement if. For each
triangle inside the view frustum, the view-dependent tessellation
factor is calculated. Then the output size is computed and memory
allocation is performed in a require block. Finally, geometry is
generated and written to allocated memory.

The implementation with thread manipulation also follows the al-
gorithm steps. First, the computation is parallelized over all tri-
angles, i.e., one thread is initially created for each input triangle.
View culling is performed using thread.kill. After the out-

(a) Side view (b) Top view (c) Tessellated mesh
Figure 9: Terrain rendering results. The terrain is generated
from a 512 × 512 displacement map. All images are generated
at 640 × 480. (a) side view, 1.14M tessellation generated vertices;
(b) top view, 322k tessellation generated vertices; (c) zoom in of
the tessellation pattern. For illustration, the tessellation is coarser
than used in actual rendering.

View BSGP (no thread man.) BSGP (with thread man.)
Ttess FPS Ttess FPS

Fig. 9(a) 43.9ms 21.0 3.62ms 142
Fig. 9(b) 5.0ms 144 2.1ms 249

Table 6: Tessellation time and render performance. Ttess is the
time taken to generated terrain geometry.

put size is computed and memory is allocated, a thread is forked
for each output vertex using thread.fork. All subsequent com-
putations are thus parallelized over all output vertices. Since the
number of output vertices is much greater than the number of initial
input triangles, GPU’s large scale parallelism is fully exploited. Co-
ordinates for each vertex are computed entirely in parallel and are
directly returned to the terrain renderer without temporarily storing
in memory.

Table 6 compares the performance of the two implementations. It
can be seen that the version with thread manipulation significantly
outperforms the other version, which does not exploit the full par-
allelism in Step 5 and degrades tessellation performance by a factor
of 10 at the high detail level in Fig. 9(a).

7 Conclusion and Future Work

We have presented BSGP, a new programming language for general
purpose computation on the GPU. The most important advantage of
BSGP is that it makes it easy to read, write, and maintain GPU pro-
grams. The reader can appreciate BSGP’s ease of programming
from our comparative analysis of BSGP and CUDA programs im-
plementing the same algorithm. Additional supporting evidence
from our experiments is that, for every pair of well written BSGP
and CUDA programs targeting the same application, the BSGP pro-
gram always has a significantly lower code complexity.

With the ever increasing computing power available on the GPU,
there is a strong demand for programming tools that can harness
this formidable raw power. Our contribution is not only to bring the
successful BSP model to GPU programming but also to show how
to design BSGP and its compiler so that ease of programming can
be achieved without sacrificing performance on GPUs. Indeed, our
experiments indicate that BSGP programs achieve similar or better
performance than well-optimized CUDA programs. With BSGP’s
ease of programming and competitive performance, programmers
are empowered to tackle more complex GPU applications, includ-
ing applications that would be extremely difficult to develop with
existing GPU programming languages.

For future work we are interested in applying meta-programming
techniques to BSGP. This will allow algebraic manipulation of col-
lective functions and dynamic generation of BSGP programs. Sec-
ondly, the BSP model may potentially serve as a unified program-
ming model for both coarse-grained parallel architectures and fine-
grained parallel architectures including GPUs. We can therefore



envision the development of a unified BSP environment for par-
allelizing programs for CPUs as well as GPUs, and the power of
parallel computing may thus be exploited with minimal extra work.

Acknowledgements

The authors would like to thank Matt Scott for his help with video
production. We are also grateful to the anonymous reviewers for
their helpful comments.

References

ARTIS, 2004. X3DToolKit homepage.
http://artis.imag.fr/Software/X3D/.

ATI, 2006. Researcher CTM documentation.
http://ati.amd.com/companyinfo/researcher/documents.html.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K.,
HOUSTON, M., AND HANRAHAN, P. 2004. Brook for GPUs: stream
computing on graphics hardware. ACM Trans. Graph. 23, 3, 777–786.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND
ZADECK, F. K. 1991. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program. Lang.

Syst. 13, 4, 451–490.

FOLEY, T., AND SUGERMAN, J. 2005. Kd-tree acceleration structures for
a gpu raytracer. In Proceedings of Graphics Hardware, 15–22.

FORD, L. R., AND FULKERSON, D. R. 1962. Flows in Networks. Prince-
ton University Press.

FORTUNE, S., AND WYLLIE, J. 1978. Parallelism in random access ma-
chines. In STOC ’78: Proceedings of the tenth annual ACM symposium

on Theory of computing, 114–118.

GRESS, A., AND ZACHMANN, G. 2006. GPU-ABiSort: optimal parallel
sorting on stream architectures. In Parallel and Distributed Processing

Symposium, 45–54.

HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., AND DAVIDSON,
A., 2007. CUDPP homepage. http://www.gpgpu.org/developer/cudpp/.

HILL, J. M. D., MCCOLL, B., STEFANESCU, D. C., GOUDREAU, M. W.,
LANG, K., RAO, S. B., SUEL, T., TSANTILAS, T., AND BISSELING,
R. H. 1998. Bsplib: The bsp programming library. Parallel Comput. 24,
14, 1947–1980.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN, P.
2007. Interactive k-d tree gpu raytracing. In I3D’07, 167–174.

KALE, L. V., AND KRISHNAN, S. 1993. Charm++: a portable concurrent
object oriented system based on c++. SIGPLAN Notices 28, 10, 91–108.

MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD, M. J.
2003. Cg: a system for programming graphics hardware in a c-like lan-
guage. In Proceedings of SIGGRAPH ’03, 896–907.

MCCOOL, M., AND DU TOIT, S. 2004. Metaprogramming GPUs with Sh.
AK Peters Ltd.

MCCOOL, M. D., QIN, Z., AND POPA, T. S. 2002. Shader metaprogram-
ming. In Proceedings of Graphics hardware, 57–68.

MCCOOL, M., DU TOIT, S., POPA, T., CHAN, B., AND MOULE, K. 2004.
Shader algebra. ACM Trans. Graph. 23, 3, 787–795.

MORETON, H. 2001. Watertight tessellation using forward differencing. In
Proceedings of Graphics Hardware, 25–32.

NVIDIA, 2007. CUDA homepage.
http://developer.nvidia.com/object/cuda.html.

OLANO, M., AND LASTRA, A. 1998. A shading language on graph-
ics hardware: the pixelflow shading system. In Proceedings of SIG-

GRAPH’98, 159–168.

PARISI, T. 2003. Flux: lightweight, standards-based web graphics in xml.
In ACM SIGGRAPH 2003 Web Graphics, 1–1.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. 2000.
Interactive multi-pass programmable shading. In Proceedings of SIG-

GRAPH’00, 425–432.
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A BSGP Primitive Operations

Currently, we provide three kinds of BSGP primitives. The implementation
of these primitives are described in the supplementary material.

Supported data parallel primitives include:

• reduce(op, x): Collective reduction of x using operator op. The
returned value is the reduction result. op has to be associative, such as
max, min and +;

• scan(op, x): Collective forward exclusive scan of x using associa-
tive operator op. Scan result overwrites x. The returned value is the
reduction result as a byproduct;

• compact(list, src, keep, flag): Collective stream com-
paction. Each src whose keep is true is compacted and appended to
list. flag specifies whether list should be cleared before append-
ing;

• split(list, src, side, flag): Collective stream splitting.
Every src is split according to side into two pieces, which are then ap-
pended to list, with the false piece preceding the true one. flag
has similar semantic as in compact;

• sort idx(key): Collective sorting and index returning. Let Ki be
key in thread with rank i and ri be sort idx’s return value. Then ri
satisfies Kri ≤ Krj for i ≤ j;

Supported rank adjusting primitives include:

• thread.split(side): Split threads. The rank is reassigned such
that a thread with a false side has a smaller rank than a thread with a
true side. Relative rank order is preserved among threads of the same
side;

• thread.sortby(key): Collective rank reassignment sorting. Let
Ki be key in thread with rank i. Thread ranks are adjusted such that after
thread.sortby returns, Ki ≤ Kj for all i ≤ j. Relative rank order
is preserved among threads with the same key, i.e., the sort is stable;

Supported thread manipulation primitives include:

• thread.kill(flag): Kill the calling thread if flag is true;

• thread.fork(n): Fork n child threads. All child threads inherit the
parent’s local variables. A unique ID between 0 and n-1 is returned to
each child thread. The parent thread no longer exists after fork;

Note that both fork and kill reassign resulting threads’ ranks to numbers
in the range of 0...thread.size-1 while preserving parent threads’
relative rank order.


